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Stress prediction for polymer blends with various shapes of droplet phase
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Abstract

The excess shear stress after application of large step strains in polymer blend is calculated from observed shapes of deformed droplets in
immiscible matrix, based on the DoieOhta expression for the interface contribution to the stress. The calculation is made for droplet shapes of
flat ellipsoid, rod with end caps, dumbbell and ellipsoid of revolution. The predicted excess relaxation modulus agrees very well with experi-
mental data normalized per one droplet with the volume-averaged radius for a poly(isobutylene)/poly(dimethyl siloxane) blend with narrow dis-
tribution of droplet size. Especially, slow stress relaxation in the intermediate stage and faster relaxation thereafter predicted from the rod like
and dumbbell shapes are consistent with the experimental data. For a blend of hydroxypropylcellulose solution/poly(dimethyl siloxane) with
broad distribution of droplet size, the predicted excess relaxation modulus agrees reasonably well with experimental data by taking account
of the size distribution.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress prediction for immiscible polymer blends under flow
has long been investigated. From an industrial point of view,
the stress prediction is important for finding better process
condition and for controlling blend morphology. However,
the stress prediction is still very difficult, because the excess
stress due to the anisotropy of interface is directly related to
evolution of interface shape under flow. A variety of models
has been presented to describe micro structural evolution
and associated rheology [1]. Ellipsoidal and rod-like models
have been typical examples for the deformed droplet shapes.
Experimentally, however, there appear dumbbell shape and
stretched thread with bulbous ends in relaxation process due
to the end-pinching, Rayleigh instability and pressure gradient
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inside the droplet [2] in much wider range of viscosity ratio
than generally expected. The viscosity ratio K and interfacial
tension govern the shape of deformed droplet phase and the in-
terfacial stress. Here, K is defined by K¼ hd/hm, where sub-
scripts d and m denote droplet and matrix, respectively.
Systematic experimental studies on stretched droplet shapes
after cessation of planar extensional flows revealed that the
dumbbell shape appeared in blends of Newtonian fluids in
very wide range of K, such as 0.01� K� 11 [3].

For immiscible binary blends, a basic equation relating the
interface shape and the volume-averaged excess stress tensor
Ds was presented by Batchelor [4] and cast in the following
form by Onuki [5,6] and Doi and Ohta [7] as

Ds¼�Gq¼� G
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In Eq. (1), G is the interfacial tension and q is the interface ten-
sor. V represents the entire volume of the system, nn is the dy-
adic of the unit vector n normal to the interface, and I denotes
the unit tensor. The integration is made over the entire inter-
face of the system. The tensor q represents the anisotropy of
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the interface due to flow and determines the interface stress.
This expression is first proposed for dilute blends [4] but
can be used for concentrated blends as well [5e7]. It should
be noted here that in general, another term concerning the ve-
locity field at the interface and the viscosity difference be-
tween the components should be added [4,6]. This term may
be ignored for systems of equal viscosity [7]. An anonymous
reviewer pointed out the importance of local flow of the me-
dium around a droplet in the recovery process where shrinkage
in the direction of the major axis and expansion along the mi-
nor axes cause negative and positive pressures and the matrix
near the minor axis flows in the direction of the major axis. We
thank the reviewer for the kind suggestion on this important
problem. At the present state, we do not know how to incorpo-
rate this problem and to evaluate the term concerning the
velocity at the interface. Thus, only the term concerning the
interface shape is evaluated in the present study. In that
case, once the shape of interface in the deformed state can
be obtained, Eq. (1) is extremely useful for calculating the in-
terface contribution to the stress. However, direct evaluation of
Eq. (1) using experimental data has not been made concerning
shapes other than ellipsoidal, such as dumbbell and rod-like
shapes.

The objectives of the present study are (1) experimental
evaluation of the basic Eq. (1) in two blend systems with very
different K and G, and (2) proposal for stress calculation method
in polydisperse droplet systems. In the present study, evalua-
tions are made for relaxation process after application of large
step shear strains. In the step-strain experiment, droplet defor-
mation and relaxation can be determined unambiguously,
when neither breakup nor coalescence occurs. A retraction
time of the major axis of a deformed droplet is much shorter
than the rotational relaxation time. The very slow orientation
relaxation results in a constant orientation angle during the
stress relaxation [8e10]. We can expect neither breakup nor
coalescence of droplets under certain conditions of the droplet
fraction (lower than ca. 20 vol%) and the external step shear
strain (smaller than ca. 5) in wide range of K and G.

As shown by Yamane et al. [8], the droplet shape observed
at large step strains could be classified as flat ellipsoid, rod-
like shape, dumbbell and ellipsoid of revolution as schemati-
cally shown in Fig. 1. The droplet shape changes in this order
to reduce the interfacial free energy [9]. It should be empha-
sized here that the characteristic length scale is not determined
by the external field in step-strain experiments without
breakup. Even if we apply the DoieOhta simultaneous equa-
tions [7] for the specific interface area, Q, and the normalized
interface tensor, q/Q, the predicted relaxation stress is

Fig. 1. Change in the droplet shape after application of a large step shear

strain: Top view (upper) and side view (lower).
inconsistent with experimental data as shown by Okamoto
et al. [11]. However, we can still use the basic Eq. (1), which
is free from this limitation.

In preliminary investigations on poly(isobutylene) (PIB)/
poly(dimethyl siloxane) (PDMS) system with K¼ 0.067, 1.1,
4.5, 11 and 15, we have observed the dumbbell shape for
K� 4.5 at the strain of g¼ 5 and/or 7. In the present study,
stress calculation and comparison with experimental data
will be made on a PIB/PDMS system with K¼ 0.067 and on
a hydroxypropylcellulose (HPC) solution/PDMS system with
K¼ 0.54. This isotropic HPC solution/PDMS system has
higher G and much broader distribution of droplet size than
those of PIB/PDMS system, and is an interesting system to
investigate the applicability of Eq. (1).

Recently, Almusallam et al. [12] proposed a comprehensive
constitutive equation incorporating the convection, retraction,
breakup and coalescence of droplets for immiscible Newto-
nian blends. Adopting an ellipsoidal model, Maffettone and
Greco [13] treated the deformation of a viscoelastic droplet
in a viscoelastic matrix. They predict that the matrix elasticity
clearly retards the droplet relaxation. Further, Yu et al. [14]
treated the viscoelastic droplet deformation and also con-
cluded that the matrix elasticity slows down the relaxation.
In the present study, we will consider systems where the elas-
tic effects can be neglected and the droplet relaxation can be
described by hm, K, G and the equilibrium radius r0. It is the
purpose of this paper to investigate Eq. (1) in most simplified
and unambiguous way.

2. Calculation of the excess shear stress from the
deformed droplet shape

In order to compare theoretical predictions for a single
droplet with data of a real polydisperse droplet system, we de-
fine the volume fraction f for a single droplet with the radius
r0 by f¼ (4pr0

3/3)(n/V) with n¼ 1. From Eq. (1), the excess
shear stress Dsxy can be written as

Dsxy ¼�
3Gf

4pr3
0

Z
dS nxny ð2Þ

where x and y are flow and flow-gradient directions. In Fig. 2,
the semi-major (a) and semi-minor axes (b and c) for ellipsoid,
rod-like shape and dumbbell are schematically shown together
with the orientation angle q to the flow direction x. In case of

Fig. 2. Definition of semi-axes, orientation angle and radius of semi-sphere of

end caps: Top view (upper) and side view (lower).
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dumbbell, b and c denote midsection radius. Experimentally,
the dumbbell shape can be fitted with a surface of rotated co-
sine curve, end-capped with hemi-spheres of radius r (>b¼ c)
[9]. For each droplet shape, an analytical solution of Eq. (2)
(or an integral equation for numerical calculation) is derived
and summarized in Table 1. The volume conservation require-
ment is applied to all the droplet shapes.

When the orientation angle q of a droplet is equal to an
angle given by affine deformation assumption, q satisfies the
following equation

cot 2q¼ g=2 ð3Þ

where g is the external step strain applied. The affine deforma-
tion assumption is a reasonable one for droplets with K¼ 1
[15], because initial stretch is also close to the affine deformed
value when K¼ 1. Experimentally, Eq. (3) holds for droplets
with K¼ 0.067 [8e10] and K¼ 0.0476 [11] all through the re-
laxation process, probably because the initial principal stretch
a/r0 exceeds the affine-deformed value only slightly (25%)
even at very small K¼ 0.067. In the preliminary investigation,
Eq. (3) also holds for K¼ 1.1, while systematic deviation from
this angle to lower one (excessive rotation) is observed for
K� 4.5. In the present study, K¼ 0.067 and K¼ 0.54, and
thus Eq. (3) is used in the stress calculation.

3. Experimental

3.1. Samples

Two blend systems, PIB/PDMS and HPC25%/PDMS, are
used in the present study. Rheological parameters, hm, K and
G, measured at 23 �C are summarized in Table 2. The
weight-average molecular weights of PIB and HPC are
1.35� 103 and 1.0� 105, respectively. HPC25% is a 25 wt%
solution in water, and the solution is in the isotropic state.
As shown in Table 2, PDMS of different viscosity is used as
a matrix in each blend. The values of G were obtained by ap-
plying the pendant drop method [16] and the short fiber retrac-
tion method with some improvement [17]. A 20/80 (wt/wt)
blend of each system is prepared. To obtain reproducible dis-
tribution of droplet size, pre-shear was given before all the
stress relaxation measurements. A very small amount of fluo-
rescein sodium salt (0.02 wt%) was added to HPC25% compo-
nent to detect the distribution of droplet size. It was confirmed
that the interfacial tension did not change by this addition.

3.2. Apparatuses

Observation of deformed PIB droplets in the PDMS matrix
using a sliding-plate apparatus is already described in the
previous papers [8,9]. The same sliding-plate apparatus with
enhanced gap of 2.7 mm was utilized to observe HPC25%
droplets in other PDMS matrix. For the 20/80 blends of both
systems, a new rheo-optical apparatus of rotational type,
RheoOptica 1 (UBM Co. Ltd. in Japan) equipped with an
optical microscope or a polarized optical microscope was
used to detect the distribution of equilibrium droplet size after
pre-shear. For both blends, stress relaxation data were obtained
with ARES (Rheometric Scientific) using a cone-plate geom-
etry with 25 mm diameter and 0.1 rad gap angle. A parallel-
plate geometry with 50 mm diameter and 1 mm gap was
also utilized to cover low stress data. The SoskeyeWinter cor-
rection [18] for non-uniform strain was made for the parallel-
plate data. To confirm accuracy of the relaxation data, Gemini
(Malvern Instruments) was also used with a cone-plate geom-
etry of 40 mm diameter and 4� gap angle. In the present study,
only the stress relaxation data are shown in the range where
ARES and Gemini give identical result. Dynamic viscoelastic
measurements were made using ARES with the same cone-
plate and parallel-plate geometries.
Table 1

The excess shear stress calculated based on Eq. (2)

Shape Excess shear stress
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l1¼ a/r0, l2¼ b/r0¼ c/r0, R¼ r/r0, X¼ x/r0. x: coordinate axis parallel to the major axis

Ellipsoid of revolution Dsxy ¼
�

3Gf

8r0

�
sin 2q

�
l3þ2

lðl3�1Þ þ
ffiffi
l
p
ðl3�4Þ
ðl3�1Þ

arcsin
ffiffiffiffiffiffiffiffiffi
1�l�3
pffiffiffiffiffiffiffiffiffi
1�l�3
p

�
, l¼ a/r0, b/r0¼ c/r0¼ l�1/2

Table 2

Characteristics of 20/80 blends measured at 23 �C

Sample hm (Pa s) K G (N/m) rV (mm) f tD (s)

PIB/PDMS 900 0.067 3.1� 10�3 9.0 0.214 4.1

HPC25%/PDMS 270 0.54 8.4� 10�3 14.7 0.186 0.97
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4. Results and discussion

4.1. Droplet dimensions and calculated modulus for
a single droplet

Fig. 3 (upper) shows time dependences of normalized
semi-axes a/r0, b/r0 and c/r0, at g¼ 5. Open symbols denote
PIB(droplet)/PDMS data for r0¼ 230 mm reproduced from
the previous study [8], while closed symbols represent data
for HPC25%(droplet)/PDMS system with r0¼ 220 mm. The
time t is normalized by tD, a linear viscoelastic relaxation
time of Palierne [19] with f / 0

tD ¼
hmr0

G

ð19Kþ 16Þð2Kþ 3Þ
40ðKþ 1Þ ð4Þ

The time tD is 84.7 s for PIB droplet and 12.3 s for HPC25%
droplet. In Fig. 3, the vertical solid lines for PIB droplet and
broken lines for HPC25% droplet are drawn to show each
period of shape changing process. It was found in the PIB/
PDMS system that the plots of normalized semi-axes vs. nor-
malized time for droplets with r0 in the range of 140e280 mm
coincide at each g [9]. This means that in this normalized plots
the shape recovery process including several shape transitions
does not depend on the droplet size in the measured range of
droplet size. All characteristic times for shape recovery may
be proportional to r0, because tD is proportional to r0. For
the HPC25%/PDMS system, the droplet-size independence

Fig. 3. Time dependences of semi-major and semi-minor axes of a single drop-

let (upper) and calculated excess relaxation modulus (lower). Open and closed

symbols denote data for a PIB droplet (r0¼ 230 mm) and a HPC25% droplet

(r0¼ 220 mm) in each PDMS matrix.
has been observed in the present study in the range of
97e252 mm.

Here we consider the appearance of dumbbell shape or
cause of non-existence of multi-constrictions in the measured
region of g. An anonymous reviewer suggested estimation of
the wavelength of the Rayleigh instability. We thank the
reviewer for the pertinent suggestion. The wavelength lM of
the Rayleigh instability was estimated using the Tomotika the-
ory [20] with an approximation of infinite length for a cylindri-
cal droplet. The maximum growth rate qM of the Rayleigh
wave for an infinitely long thread is given by

qM ¼
GUðlM;KÞ

2hmrini

ð5Þ

where lM and rini are the dominant wavelength of distortion
and the initial thread radius, and U(l,K ) denotes the Tomotika
function [20]. For a given K, U becomes a function of normal-
ized wave number X¼ krini¼ 2prini/l, and has a maximum
UM¼U(lM,K ). The corresponding dominant wave number
XM and wavelength lM can be determined, where rini¼ b¼ c
at the time when a droplet becomes the rod-like shape. For
the PIB/PDMS system (r0¼ 230 mm), lM becomes 6.2r0,
4.8r0 and 4.2r0 at g¼ 3, 4 and 5, while 2a is 4.9r0, 7.8r0

and 10r0 at the same strain. Similarly for the HPC25%/
PDMS system (r0¼ 220 mm), lM is calculated to be 6.0r0

and 4.2r0 at g¼ 3 and 5, while 2a is 4.7r0 and 9.0r0. Compar-
ing lM with 2a, the wavelength is longer than the major axis at
g¼ 3, and there may be no possibility for multi-constrictions.
However, at larger strains the wavelength becomes smaller
than the major axis. Especially, at g¼ 5 the wavelength is
roughly 1/2 of the major axis. Thus it is necessary to calculate
the amplitude A of the dominant wave in the rod-like period.

A¼ A0 exp½qMðt� t0Þ� ð6Þ

Here, A0 is the initial thermal fluctuation and t0 is the time
when the droplet becomes the rod-like shape. Based on the
Kuhn theory, Elemans et al. evaluated A0 by

A0 ¼
�

21kBT

8p3=2G

�1=2

ð7Þ

where kB is the Boltzmann constant and T is the absolute tem-
perature [21]. The calculated initial thermal fluctuation is
smaller than 1 nm, and the amplitude at the end of the rod-
like period becomes negligibly small (1.8 nm for PIB/PDMS
and 0.8 nm for HPC/PDMS systems at g¼ 5). The small
amplitude is due to large hm and rini (or small qM) and to a
relatively short period of time with the rod-like shape. The
end-pinching mechanism is considered to be the main cause
of appearance of the dumbbell shape at g� 5.

In Fig. 3 (lower), normalized excess relaxation moduli of
the two systems are shown, which are calculated based on the
results listed in Table 1. Here, we define the excess relaxation
modulus by DG(t,g)¼Dsxy/g, and represent it in a normalized
form, (r0/Gf)DG(t,g). Considering a possible experimental
error in the smallest semi-axis, b/r0, we used only the data
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of a/r0 and c/r0 in the calculation. The value of b/r0 is esti-
mated based on the constant volume condition. The fast relax-
ation at short times in the calculated modulus corresponds to
the shape change into axial symmetry, and the subsequent pla-
teau region reflects small change in dimension in the rod-like
stage. The modulus decays continuously in the dumbbell
stage, and then decreases rapidly in the terminal region reflect-
ing the change from ellipsoid of revolution to sphere. It seems
that the calculated modulus for the PIB/PDMS system in
Fig. 3 relaxes faster than a single exponential decay in both
the short time and terminal regions. However, when the
modulus is plotted semi-logarithmically against time, a straight
line is obtained in each region (first five plots in the flat-
ellipsoid stage and last four plots in the ellipsoid-of-revolution
stage). From the slope, we can see that the relaxation time is
close to tD in the terminal region, and the time is about
0.3tD in the short time region. It should be noted here that
if we include dumbbell or rod-dumbbell stage in addition to
the ellipsoid-of-revolution stage, the modulus cannot be
expressed by a single exponential decay.

4.2. Distribution of droplet size in the 20/80 blend

Before rheological measurements, the pre-shear at the shear
rate of _g ¼ 0:25 s�1 for 1240 s was given to the PIB/PDMS
blend, while 0.5 s�1 pre-shear for 1500 s was given to the
HPC25%/PDMS blend. In the PIB/PDMS blend, it is very dif-
ficult to determine the distribution of droplet size. After the
pre-shear and also at rest, the 20/80 blend of PIB/PDMS is
in a white creamy state. Since fluorescein is hydrophilic, it
cannot be used in a hydrophobic system like a PIB/PDMS
blend. The volume-averaged radius rV¼ 9.0 mm of this blend
is evaluated from a comparison between dynamic viscoelastic
data and prediction of the emulsion model by Palierne [19].
However, from direct observation using a new apparatus
RheoOptica 1, it was found that the number-averaged radius
rN is around 8 mm and that the distribution is rather narrow
(rV/rN< 1.2). On the other hand, the distribution of droplet size
in the 20/80 blend of HPC25%/PDMS with fluorescein sodium
salt was determined after pre-shear using RheoOptica 1. A his-
togram of droplet size for the HPC25%/PDMS blend is shown
in Fig. 4, where fi is a normalized frequency of droplet with
radius ri. From Fig. 4, rV and rV/rN are evaluated as rV¼
14.7 mm and rV/rN¼ 1.93. It was confirmed that the given _g
is in the range where rVf _g�1, or in the non-hysteresis region
[22,23].

After complete breakup, the capillary number Ca (¼
hm _grV=G) for the average droplet with rV should be smaller
than the critical capillary number CaC for breakup. A fitting
equation by de Bruijn for CaC data (the Grace curve) for shear
flow is

log CaC ¼ c0þ c1log Kþ c2ðlog KÞ2þ c3

log K� log KC

ð8Þ

with c0¼�0.506, c1¼�0.0994, c2¼ 0.124, c3¼�0.115 and
KC¼ 4.08, where KC is the critical viscosity ratio above which
breakup is not possible in shear flow [23,24]. In the HPC25%/
PDMS blend, CaC¼ 0.458 and Ca¼ 0.236, and this small Ca
is consistent with the wide distribution of droplet size. The
critical radius is calculated to be 28.5 mm from the CaC value.
In Fig. 4, the cut-off of the size distribution in the HPC25%/
PDMS blend is not clear, but the observed maximum radius
(28 mm) is comparable with this critical radius. Concerning
the size distribution in small droplets, the minimum radius ob-
servable in our optical microscope is around 1e2 mm. Smaller
droplets may exist but we could not determine the smaller-size
distribution. In the PIB/PDMS blend, Ca (¼0.653) for the
droplet with rV is close to CaC (¼0.701), reflecting the narrow
distribution of droplet size. In a series of blends with the same
G, the droplet size distribution is the narrowest around K¼ 1
[25]. However, smaller droplets may be stable in a blend
with high G such as HPC25%/PDMS, resulting in the wide
distribution even at K¼ 0.54.

4.3. Dynamic viscoelasticity of the 20/80 blend

First, the linear viscoelastic region was determined from
the strain dependences of the storage and loss moduli, G0

and G00. The amplitude of strain was set to be 0.03 for
both blends and 0.2 for the components. Angular frequency
dependencies of G0 and G00 for the 20/80 blend of PIB/
PDMS with f¼ 0.214 at 23 �C are shown by open circles
in Fig. 5 (left and right, respectively). For a later discussion
on component contribution, the frequency axis is normalized
by tD, the relaxation time of the emulsion model of Palierne
[19].

tD ¼
hmrV

4G

ð19Kþ 16Þ½2Kþ 3� 2fðK� 1Þ�
10ðKþ 1Þ � 2fð5Kþ 2Þ ð9Þ

Fig. 4. Histogram for the droplet radius ri after pre-shear of _g ¼ 0:50 s�1.



2376 M. Takahashi et al. / Polymer 48 (2007) 2371e2379
Fig. 5. Frequency dependences of the storage (left) and loss moduli (right) compared with prediction from the emulsion model (G/rV¼ 345 Pa). Evaluated

component contributions by two methods are also shown together with the minor droplet phase contribution.
A clear shoulder appears in G0 due to the interface contri-
bution in low frequency region. The thick solid lines in
Fig. 5 represent prediction of the emulsion model of Palierne
for G0 and G00. Here, the following simplified version by
Graebling et al. [26] is used.

G�ðuÞ ¼ G�mðuÞ
1þ 3fHðuÞ
1� 2fHðuÞ ð10Þ

with the average viscoelastic factor H(u) of the dispersed
phase.
the necessary quantities are already obtained as shown in
Table 2. The Palierne prediction for G*(u) also agrees very
well with the HPC25%/PDMS data.

Here we evaluate the component contribution to G*(u) in
the PIB/PDMS blend in order to obtain the interface contribu-
tion. Lacroix et al. [27] and Vinckier and Laun [28] evaluated
the component contribution by putting G¼ 0 in Eq. (11).
Vinckier et al. verified the method by comparing the calcu-
lated modulus with experimental data in which a blend sample
has the same phase-separated structure but with zero interfa-
cial tension. This particular sample was obtained by quenching
HðuÞ ¼
�
4G=rV

�	
2G�m

�
u
�
þ 5G�d

�
u
�

�
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�
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�
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�
þ 19G�d

�
u
�
 ð11Þ
In Eqs. (10) and (11), G*(u) is the complex modulus at u,
with subscripts m and d for matrix and dispersed phases,
respectively. For various types of size distribution curves,
Graebling et al. verified that Eqs. (10) and (11) are valid
when rV/rN� 2.0 [26]. For the PIB/PDMS blend, agreement
between the prediction and the data becomes excellent,
when the value of G/rV is set to be 345 Pa. The average radius
rV¼ 9.0 mm obtained from this fitting is consistent with the
microscopic observation. In the HPC25%/PDMS blend, all
the sample below LCST [28]. Another method for evaluation
of the component contribution is to adopt the linear blending
rule, in which the component contribution is given by the
sum of matrix and droplet contributions ½ð1� fÞG�mðuÞþ
fG�dðuÞ� [28]. In Fig. 5, the component contributions evalu-
ated by both methods are compared, where the thin solid
line is obtained from the zero G assumption and the dotted
line from the blending rule. Almost the same result for the
component contribution is obtained for G0 as well as for G00.



2377M. Takahashi et al. / Polymer 48 (2007) 2371e2379
In case of G0, the component contribution becomes smaller
than 1/10 of the blend data at utD� 1.7.

4.4. Comparison between experimental and calculated
excess relaxation moduli

The experimental excess modulus DG(t,g) was evaluated
from the measured relaxation moduli of the blend and the
components, assuming linear additivity for the component
contribution.

DGðt;gÞ ¼ Gðt;gÞ � ½ð1�fÞGmðt;gÞ þfGdðt;gÞ� ð12Þ

In case of miscible blends, the assumption of linear additiv-
ity is not appropriate, because a cross term is needed to
describe the interactions between component polymers. How-
ever, in immiscible blends, the component polymers relax
almost independently in each phase. At the instant of applica-
tion of a step strain, the droplet phase deforms almost affinely
in the range of 0.0476� K� 1. The polymer chains relax so
fast while the droplet shape is flat ellipsoid. All these factors
may support the application of Eq. (12). Another reason for
adopting the linear blending rule is the agreement between
the blending rule and the zero G assumption in linear visco-
elasticity. In case of steady shear flow, applicability of the
linear blending rule includes much more difficult problems
[29,30]. In our experiments, the droplet phase component
(PIB or HPC25%) relaxes very rapidly and makes a negligible
contribution in each blend. The negligible droplet-phase con-
tribution in linear viscoelasticity is already seen in Fig. 5.
Thus, DG(t,g) is evaluated by simply subtracting the matrix
contribution (1� f)Gm(t,g) from the blend modulus G(t,g).
In Fig. 6, the experimental data of G(t,g) and (1� f)Gm(t,g)
are shown for the PIB/PDMS blend at g¼ 4, together with

Fig. 6. Measured relaxation modulus and evaluated excess modulus for a PIB/

PDMS blend at g¼ 4. The matrix contribution to the relaxation modulus is

also shown by the dotted line.
the subtracted result, DG(t,g), by the thick solid line. The
component contribution, or (1� f)Gm(t,g) in this case,
becomes smaller than 1/10 of G(t,g) at t/tD� 0.33. Somewhat
longer time (t/tD¼ 0.45e0.52) was necessary for the
HPC25%/PDMS blend at g¼ 3 and 4 when the component
contribution becomes 1/10 of G(t,g). In both systems,
DG(t,g) at short times (early stage of flat ellipsoid) is not
reliable due to large component contributions to G(t,g).

In Figs. 7 and 8, the normalized modulus (r0/Gf)DG(t,g)
calculated for the PIB/PDMS blend at g¼ 3 and 4 (solid
line in each figure) is compared with experimental modulus
(rV/Gf)DG(t,g). Here, the normalization factor r0/G for the
droplet is replaced by rV/G for the blend. The droplet shape
in each relaxation process is specified in the figures. The
dumbbell shape appears only at g� 4. The calculated modulus
agrees very well with (rV/Gf)DG(t,g) data, even in the relax-
ation process with the dumbbell shape. Small deviation at long
time end is due to the polydispersity of droplet radius in the
real system. Comparison at short times (t/tD< 0.33) should
be semi-quantitative, due to the ambiguity in evaluation of
the component contribution at very short times. Owing to
the strong polydispersity effect at g¼ 5, a simple comparison
as given here could not be made at that strain. In Fig. 8, the
stress relaxation rate after the rod-like shape accelerates while
the droplet shape changes into dumbbell and finally into ellip-
soid of revolution. In Figs. 7 and 8, the calculated stress with
an assumption of ellipsoidal shape all through the relaxation
process is represented by the dotted lines. In the dumbbell

Fig. 7. Comparison between calculated and experimental time dependences of

normalized excess relaxation modulus in case of narrow distribution of droplet

size.
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period, the assumption of ellipsoidal shape gives lower modu-
lus than the experimental data as shown in Fig. 8. On the other
hand, the ellipsoidal assumption seems to be valid when the
dumbbell shape does not appear in the process as demon-
strated in Fig. 7.

Next we consider a broad distribution system like
HPC25%/PDMS. Although the range of r0 is limited (140e
280 mm for PIB/PDMS and 97e252 mm for HPC25%/PDMS
systems), it was revealed that the normalized semi-axes a/r0,
b/r0 and c/r0 become universal functions of t/tD and g at given
G, K and hm. Here we assume that this universality can be
extended to much smaller droplets. Then, we can see from
Table 1 that DG(t,g) can be written as

DGðt;gÞ ¼ Gf

r0

F

�
t

tDðr0Þ
;g

�
ð13Þ

by introducing a universal function F for different r0. The
contribution of ith droplet (with the radius ri and the volume
fraction fi) to DG(t,g) becomes

DGiðt;gÞ ¼
Gfi

ri

F

�
t

tDðriÞ
;g

�
ð14Þ

Since ith droplet contributes to DG(t,g) independently under
the condition of no breakup and no coalescence, DG(t,g)
becomes

DGðt;gÞ ¼
X

i

DGiðt;gÞ ¼ G
X

i

fi

ri

F

�
t

tDðriÞ
;g

�
ð15Þ

Fig. 8. Comparison similar to Fig. 7. The dumbbell shape appears at this strain.
Then the normalized modulus is given by

rV

Gf
DGðt;gÞ ¼

X
i

fi

f

rV

ri

F

 
t

tDðrVÞ ri

rV

;g

!
ð16Þ

Eq. (16) implies that the normalized modulus can be calcu-
lated by summation of shifted F, where the horizontal and
vertical shift factors are ri/rV and (fi/f)(rV/ri), respectively.
The horizontal shift factor comes from the r-dependence of
tD. From the microscopic observation of the normalized
frequency fi for droplets with ri, fi/f can be calculated by

fi

f
¼ fir

3
iP

i

fir
3
i

ð17Þ

In Figs. 9 and 10, calculated and experimental normalized
moduli of the HPC25%/PDMS blend are compared at g¼ 3
and 5, respectively. For comparison, the calculated modulus
for a single droplet approximation is represented by the broken
line in each figure. It should be emphasized that the single
droplet approximation fails even for a system with rV/rN¼
1.93 at g� 3. The effect of polydispersity becomes more
prominent as g increases, because droplets with different sizes
take different shapes at long times for such large g. Although
some ambiguity still remains in evaluation of small-droplet
distribution and component contribution to the modulus at
short times, the proposed method for polydisperse system
works reasonably well at both strains. Deviation of predicted

Fig. 9. Comparison of the normalized modulus in case of broad distribution of

droplet size. The solid line is obtained by summation of shifted broken lines

(shifted single-droplet lines) according to a proposed scaling relation.
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modulus from the experimental data at long time end may be
due to some ambiguity in the distribution of largest droplets.
The excess relaxation modulus is predicted rather well in the
present study without considering the stress term concerned
with velocity at the interface and viscosity difference. It
should be emphasized here that evaluation of this stress term
is important in general flow field especially when the interface
velocity is rather fast.

5. Conclusions

Analytical solutions (or integral equations) for the excess
shear stress Dsxy are obtained for droplets with the shapes of
flat ellipsoid, rod with end caps, dumbbell and ellipsoid of
revolution. For a 20/80 blend of PIB/PDMS with narrow dis-
tribution of droplet size (rV/rN< 1.2), predicted normalized
modulus agrees very well with experimental data normalized
per one droplet with the volume-averaged radius. Predicted
slow relaxation in the intermediate stage with the rod-like
shape and fast relaxation thereafter with the shapes of dumb-
bell and ellipsoid of revolution are consistent with the exper-
imental data. The ellipsoidal assumption with the constant
volume condition is valid only when the dumbbell shape
does not appear in the process. For polydisperse systems,

Fig. 10. Comparison similar to Fig. 9. The dumbbell shape appears at this

strain.
a universal function F is introduced to express simple shifts
of the modulus curve with changing the droplet size ri and
its volume fraction fi. The normalized modulus is expressed
by summation of shifted F, with horizontal (ri/rV) and vertical
(firV/fri) shift factors. This method works reasonably well for
a HPC/PDMS blend with broad distribution (rV/rN¼ 1.93).
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